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Abstract

The use of a conditionally unbiased, but imperfect, volatility proxy can lead to undesirable

outcomes in standard methods for comparing conditional variance forecasts. We derive necessary

and sufficient conditions on functional form of the loss function for the ranking of competing

volatility forecasts to be robust to the presence of noise in the volatility proxy, and derive some

interesting special cases of this class of “robust” loss functions. We motivate the theory with

analytical results on the distortions caused by some widely-used loss functions, when used with

standard volatility proxies such as squared returns, the intra-daily range or realised volatility. The

methods are illustrated with an application to the volatility of returns on IBM over the period 1993

to 2003.
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1 Introduction

Many forecasting problems in economics and finance involve a variable of interest that is unobserv-

able, even ex post. The most prominent example of such a problem is the forecasting of volatility

for use in financial decision-making. Other problems include forecasting the true rates of inflation,

GDP growth or unemployment (not simply the announced rates); forecasting trade intensities; and

forecasting default probabilities or ‘crash’ probabilities. While evaluating and comparing economic

forecasts is a well-studied problem, dating back at least to Cowles (1933), if the variable of interest

is latent then the problem of forecast evaluation and comparison becomes more complicated1.

This complication can be resolved, at least partly, if a conditionally unbiased estimator of the

latent variable of interest is available. In volatility forecasting, for example, the squared return on

an asset over the period t (assuming a zero mean return) is a conditionally unbiased estimator of

the true unobserved conditional variance of the asset over the period t.2 Many of the standard

methods for forecast evaluation and comparison, such as the Mincer-Zarnowitz (1969) regression

and the Diebold and Mariano (1995) and West (1996) tests, can be shown to be applicable when

such a conditionally unbiased proxy is used, see Hansen and Lunde (2006) for example. However, it

is not true that using a conditionally unbiased proxy will always lead to the same outcome as if the

true latent variable was used, as shown Andersen and Bollerslev (1998), Andersen, et al. (2005a)

and Hansen and Lunde (2006). In particular, some of the methods employed in recent applied work

can lead to perverse outcomes.

For example, in the volatility forecasting literature numerous authors have expressed concern

that a few extreme observations may have an unduly large impact on the outcomes of forecast

evaluation and comparison tests, see Bollerslev and Ghysels (1994), Andersen, et al. (1999) and

Poon and Granger (2003) amongst others. One common response to this concern is to employ

forecast loss functions that are “less sensitive” to large observations than the usual squared forecast

error loss function, such as absolute error or proportional error loss functions. In this paper we

show analytically that such approaches can lead to incorrect inferences and the selection of inferior

forecasts over better forecasts.

We focus on volatility forecasting as a specific case of the more general problem of latent variable

forecasting. In Section 5 we discuss the extension of our results to other latent variable forecasting

1For recent surveys of the forecast evaluation literature see Clements (2005) and West (2005). For recent surveys

of the volatility forecasting literature, see Andersen, et al. (2005b), Poon and Granger (2003) and Shephard (2005).
2The high/low range and realised volatility, see Parkinson (1980) and Andersen, et al. (2003) for example, have

also been used as volatility proxies.
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problems. Our research builds on work by Andersen and Bollerslev (1998), Meddahi (2001) and

Hansen and Lunde (2006), who were among the first to analyse the problems introduced by the

presence of noise in a volatility proxy. This paper is most closely related to the paper of Hansen

and Lunde (2006), and we extend their work in two important directions: Firstly, we derive explicit

analytical results for the undesirable outcomes that may arise when some common loss functions are

employed, considering the three most commonly-used volatility proxies: the daily squared return,

the intra-daily range and a realised variance estimator, and show that the distortions vary greatly

with the choice of loss function. Secondly, we provide necessary and sufficient conditions on the

functional form of the loss function to ensure that the ranking of various forecasts is preserved when

using a noisy volatility proxy. These conditions are related to those of Gourieroux, et al. (1984)

for quasi-maximum likelihood estimation3.

The canonical problem in point forecasting is to find the forecast that minimises the expected

loss, conditional on time t information. That is,

Ŷ ∗t+h,t ≡ argmin
ŷ∈Y

E [L (Yt+h, ŷ) |Ft] (1)

where Yt+h is the variable of interest, L is the forecast user’s loss function, Y is the set of possible
forecasts, and Ft is the time t information set. Starting with the assumption that the forecast user is

interested in the conditional variance, and that some noisy volatility proxy will be used in evaluation

tests, we effectively take the solution of the optimisation problem above (the conditional variance)

as given, and consider the loss functions that will generate the desired solution. This approach is

unusual in the economic forecasting literature: the more common approach is to take the forecast

user’s loss function as given and derive the optimal forecast for that loss function; related papers

here are Granger (1969), Engle (1993), Christoffersen and Diebold (1997), Christoffersen and Jacobs

(2004) and Patton and Timmermann (2004), amongst others. The fact that we know the forecast

user desires a variance forecast places limits on the class of loss functions that may be used for

volatility comparison, ruling out some choices previously used in the literature. However we show

that the class of “robust” loss functions still admits a wide variety of loss functions, allowing much

flexibility in representing volatility forecast users’ preferences.

3All of the results in this paper apply directly to the problem of forecasting integrated variance, which Andersen,

et al. (2002), amongst others, argue is a more “relevant” notion of variability. In that application, we take expected

integrated variance rather than the conditional variance as the latent object of interest, and we require that an

unbiased realised variance estimator is available. We focus on the problem of conditional variance forecasting due to

its prevalence in applied work in the past two decades.
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One of the main practical findings of this paper is that the stated goal of forecasting the con-

ditional variance is not consistent with the use of some loss functions when an imperfect volatility

proxy is employed. However, these loss functions are not themselves inherently invalid or inappro-

priate: if the forecast user’s preferences are indeed described by an “non-robust” loss function, then

this simply implies that the object of interest to that forecast user is not the conditional variance

but rather some other quantity4. If the object of interest to the forecast user is known to be the

conditional variance then this paper outlines tests for forecast comparison that are applicable when

an imperfect volatility proxy is employed.

The remainder of this paper is as follows. In Section 2 we analytically consider volatility forecast

comparison tests using an imperfect volatility proxy, showing the problems that arise when using

some common loss functions. We initially consider using squared daily returns as the proxy, and

then consider using the range and realised variance. In Section 3 we provide necessary and sufficient

conditions on the functional form of a loss function for the ranking of competing volatility forecasts

to be robust to the presence of noise in the volatility proxy, and derive some interesting special

cases of this class of robust loss functions. One of these special cases is a parametric family of

loss functions that nests two of the most widely-used loss functions in the literature, namely the

MSE and QLIKE loss functions. In Section 4 we present an illustration using two widely-used

volatility models, and in Section 5 we conclude and suggest extensions. All proofs and derivations

are provided in appendices.

1.1 Notation

Let rt be the variable whose conditional variance is of interest, usually a daily or monthly asset

return in the volatility forecasting literature. Let the information set used in the forecasts be

denoted Ft−1, which is assumed to contain σ (rt−j , j ≥ 1) , but may also include other variables
and/or variables measured at a higher frequency than rt (such as intra-daily returns). Denote

V [rt|Ft−1] ≡ Vt−1 [rt] ≡ σ2t . We will assume throughout that E [rt|Ft−1] ≡ Et−1 [rt] = 0, and so

σ2t = Et−1
£
r2t
¤
. Let εt ≡ rt/σt denote the ‘standardised return’. Let a forecast of the conditional

variance of rt be denoted ht, or hi,t if there is more than one forecast under analysis. We will

take forecasts as “primitive”, and not consider the specific models and estimators that may have

4For example, the utility of realised returns on a portfolio formed using a volatility forecast, or the profits obtained

from an option trading strategy based on a volatility forecast, see West, et al. (1993) and Engle, et al. (1993) for

example, define economically meaningful loss functions, even though the optimal forecasts under those loss functions

will not generally be the true conditional variance.
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generated the forecasts. The loss function of the forecast user is L : R+ × H → R+, where the

first argument of L is σ2t or some proxy for σ
2
t , denoted σ̂2t , and the second is ht. R+ and R++

denote the non-negative and positive parts of the real line respectively, and H is a compact subset

of R++. Commonly used volatility proxies are the squared return, r2t , realised volatility, RVt, and

the range, RGt. Optimal forecasts for a given loss function will be denoted h∗t and are defined as:

h∗t ≡ argmin
h∈H

E
£
L
¡
σ̂2t , h

¢
|Ft−1

¤
(2)

2 Volatility forecast comparison using an imperfect volatility proxy

We consider volatility forecast comparison tests based on (unconditional) expected loss, based on

the work of Diebold and Mariano (1995) and West (1996). If we define ui,t ≡ L
¡
σ2t , hi,t

¢
, where L

is the forecast user’s loss function, and let dt = u1,t − u2,t, then a DMW test of equal predictive

accuracy can be conducted as a simple Wald test that E [dt] = 0.5

Of primary interest is whether the feasible ranking of two forecasts obtained using an imperfect

volatility proxy is the same as the infeasible ranking that would be obtained using the unobservable

true conditional variance. We define loss functions that yield such an equivalence as “robust”:

Definition 1 A loss function, L, is “robust” if the ranking of any two (possibly imperfect) volatility

forecasts, h1t and h2t, by expected loss is the same whether the ranking is done using the true

conditional variance, σ2t , or some conditionally unbiased volatility proxy, σ̂
2
t . That is,

E
£
L
¡
σ2t , h1t

¢¤
R E

£
L
¡
σ2t , h2t

¢¤
⇔ E

£
L
¡
σ̂2t , h1t

¢¤
R E

£
L
¡
σ̂2t , h2t

¢¤
(3)

Meddahi (2001) showed that the ranking of forecasts on the basis of the R2 from the Mincer-

Zarnowitz regression:

σ̂2t = β0 + β1hit + eit (4)

is robust to noise in σ̂2t . Hansen and Lunde (2006) showed that the R
2 from a regression of log

¡
σ̂2t
¢
on

a constant and log (ht) is not robust to noise, and showed more generally that a sufficient condition

for a loss function to be robust is that ∂2L
¡
σ2, h

¢
/∂
¡
σ2
¢2 does not depend on ht. In Section 3

5The key difference between the approaches of Diebold and Mariano (1995) and West (1996) is that the latter

explicitly allows for forecasts that are based on estimated parameters, whereas the null of equal predictive accuracy

is based on population parameters, see West (2005). The problems we identify below arise even in the absence of

estimation error in the forecasts, thus our treatment of the forecasts as primitive, and so for our purposes these two

approaches coincide.
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we generalise this result by providing necessary and sufficient conditions for a loss function to be

robust.6 ,7

It is worth noting that although the ranking obtained from a robust loss function will be

invariant to noise in the proxy, the actual level of expected loss obtained using a proxy will be

larger than that which would be obtained when using the true conditional variance. This point was

compellingly presented in Andersen and Bollerslev (1998) and Andersen, et al. (2004). Andersen,

et al. (2005a) provide a method to estimate the distortion in the level of expected loss and thereby

obtain an estimator of the level of expected loss that would be obtained using the true latent

variable of interest.

Notice that for any robust loss function the true conditional variance is the optimal forecast

(we formally show this in the proof of Proposition 2), and thus a necessary condition for a loss

function to be robust to noise is that the true conditional variance is the optimal forecast. In this

section we determine whether this condition holds for some common loss functions, and analytically

characterise the distortion for those cases where it is violated.

Under squared-error loss, also known as MSE loss, one can easily show that the optimal forecast

is the conditional variance: h∗t = Et−1
£
σ̂2t
¤
= σ2t . Thus a DMW comparison of the true conditional

variance with any other volatility forecast, using a conditionally unbiased volatility proxy and MSE

as the loss function, will lead to the selection of the true conditional variance, subject to sampling

variability. Further, it is clear that the MSE loss function also satisfies the sufficient condition of

Hansen and Lunde (2006), and thus MSE is a “robust” loss function.

One common response to the concern that a few extreme observations drive the results of

volatility forecast comparison studies is to employ alternative measures of forecast accuracy, see

Pagan and Schwert (1990), Bollerslev and Ghysels (1994), Bollerslev, et al. (1994), Diebold and

Lopez (1996), Andersen, et al. (1999), Poon and Granger (2003) and Hansen and Lunde (2005), for

example. A collection of loss functions employed in the literature on volatility forecast evaluation

and comparison is presented below. Some of these loss functions are called different names by

different authors: MSE-prop is also known as “heteroskedasticity-adjusted MSE (HMSE)”; MAE-

6Our use of “robust” is related, though not equivalent, to the use of this adjective in estimation theory, where

it applies to estimators that insensitive/less sensitive to the presence of outliers in the data, see Huber (1981) for

example. A “robust” loss function, in the sense of Definition 1, will generally not be robust to the presence of outliers.
7We focus on measures of accuracy that can be expressed as sample means of losses incurred on each period in

the sample. Rankings based on R2 from regressions do not fit within this framework. See Hansen and Lunde (2006)

for more discussion of R2 as a ranking criterion.
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prop is also known as “mean absolute percentage error (MAPE)” or as “heteroskedasticity-adjusted

MAE (HMAE)”.

MSE : L
¡
σ̂2t , ht

¢
=
¡
σ̂2t − ht

¢2
(5)

QLIKE : L
¡
σ̂2t , ht

¢
= log ht +

σ̂2t
ht

(6)

MSE-LOG : L
¡
σ̂2t , ht

¢
=
¡
log σ̂2t − log ht

¢2
(7)

MSE-SD : L
¡
σ̂2t , ht

¢
=
³
σ̂t −

p
ht

´2
(8)

MSE-prop : L
¡
σ̂2t , ht

¢
=

µ
σ̂2t
ht
− 1
¶2

(9)

MAE : L
¡
σ̂2t , ht

¢
=
¯̄
σ̂2t − ht

¯̄
(10)

MAE-LOG : L
¡
σ̂2t , ht

¢
=
¯̄
log σ̂2t − loght

¯̄
(11)

MAE-SD : L
¡
σ̂2t , ht

¢
=
¯̄̄
σ̂t −

p
ht

¯̄̄
(12)

MAE-prop : L
¡
σ̂2t , ht

¢
=

¯̄̄̄
σ̂2t
ht
− 1
¯̄̄̄

(13)

2.1 Using squared returns as a volatility proxy

In this section we will focus on the use of daily squared returns for volatility forecast evaluation,

and in Section 2.2 we will examine the use of realised volatility and the range. We will derive our

results under three assumptions for the conditional distribution of daily returns:

rt|Ft−1 ∼

⎧⎪⎪⎨⎪⎪⎩
Ft
¡
0, σ2t

¢
Student’s t

¡
0, σ2t , ν

¢
N
¡
0, σ2t

¢
where Ft

¡
0, σ2t

¢
is some unspecified distribution with mean zero and variance σ2t ,and Student’s

t
¡
0, σ2t , ν

¢
is a Student’s t distribution with mean zero, variance σ2t and ν degrees of freedom. In

all cases it is clear that Et−1
£
r2t
¤
= σ2t , and so the squared daily return is a valid volatility proxy.

Above we showed that the MSE loss function satisfied the necessary condition, that the optimal

forecast is the true conditional variance. Now consider the MAE loss function from above. As usual

with an absolute-error loss function we obtain the median as the optimal forecast:

h∗t = Mediant−1
£
r2t
¤

= σ2t ·Mediant−1
£
ε2t
¤

=

⎧⎨⎩ σ2t · ν−2ν ·Median [F1,ν ] , if rt|Ft−1 ∼ Student’s t
¡
0, σ2t , ν

¢
σ2t ·Median

£
χ21
¤
≈ 0.45σ2t , if rt|Ft−1 ∼ N

¡
0, σ2t

¢ (14)
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where εt ≡ rt/σt and Mediant−1
£
r2t
¤
is the conditional median of r2t given Ft−1. Thus, under

normality, if we use MAE to compare a forecast which is exactly equal to σ2t for all t to one that

is equal to 0.45σ2t for all t, using the squared daily return as a proxy for the conditional variance,

we will usually conclude that the perfect forecast is inferior to the one which is wrong by more

than a factor of 2. Figure 1 shows that if returns have a Student’s t distribution then the degree

of distortion is even larger.

Another commonly used loss function is the MSE loss function on standard deviations rather

than variances, see equation (8). The motivation for this loss function is that taking square root of

the two arguments of the squared-error loss function shrinks the larger values towards zero, reducing

the impact of the most extreme values of rt. However it also leads to an incorrect volatility forecast

being selected as optimal:

h∗t ≡ argmin
h∈H

Et−1

∙³
|rt|−

√
h
´2¸

FOC 0 =
∂

∂h
Et−1

∙³
|rt|−

√
h
´2¸¯̄̄̄

h=h∗t

so h∗t = (Et−1 [|rt|])2 (15)

= σ2t (Et−1 [|εt|])2

=

⎧⎨⎩ ν−2
π

¡
Γ
¡
ν−1
2

¢
/Γ
¡
ν
2

¢¢2
σ2t , if rt|Ft−1 ∼ Student’s t

¡
0, σ2t , ν

¢
, ν > 2

2
πσ

2
t ≈ 0.64σ2t , if rt|Ft−1 ∼ N

¡
0, σ2t

¢ (16)

For this loss function it is also true that excess kurtosis in asset returns exacerbates the distortion,

which we can see in Figure 2 for returns that have the Student’s t distribution.

In Appendix 1 we provide the corresponding calculations for the remaining loss functions in

equations (5) to (13) above, and summarise the results in Table 1. Table 1 shows that the degree of

distortion in the optimal forecast according to some of the loss functions used in the literature can

be substantial. Under normality the optimal forecast under these loss functions ranges from about

one quarter of the true conditional variance to three times the true conditional variance. If returns

exhibit excess conditional kurtosis then the range of optimal forecasts from these loss functions is

even wider.

Table 1 provides a theoretical explanation for the almost inevitable conflicting rankings of

volatility forecasts that are obtained when non-robust loss functions are used in applied work.

Lamoureux and Lastrapes (1993), Hamilton and Susmel (1994), Bollerslev and Ghysels (1996)

and Hansen and Lunde (2005), amongst many others, use some or all of the nine loss functions

considered in Table 1 and find that the best-performing volatility model changes with the choice
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of loss function. Given that, for example, the MSE-prop loss function leads to an optimal forecast

that is biased upwards by at least a factor of three, while the MAE loss function leads to an optimal

forecast that is biased downwards by at least a factor of two, it is no surprise that different rankings

of volatility forecasts are found.

To illustrate and emphasize the empirical relevance of the results of Table 1, consider the

following example.

Example 1: Assume that rt|Ft−1 ∼ N
¡
0, σ2t

¢
, and that σ2t follows a simple GARCH(1,1)

process: σ2t = ω + βσ2t−1 + αr2t−1, subject to ω > 0 and 1− β2 − 2αβ − 3α2 > 0 (which is required
for E

£
σ4t
¤
to exist). Let σ̂2t = r2t , let L be the MSE-SD loss function, and let h1t = σ2t and

h2t = 2/πσ
2
t . Let n denote the number of observations available for conducting the test. Then the

DMW test statistic evaluated at population moments is:

DMW0 =

Ã
5 + 3

p
2/π

1−
p
2/π

· 1− (α+ β)2

1− (α+ β)2 − 2α2
− 1
!−1/2

·
√
n

≈ 0.1632
√
n, when α = 0.05 and β = 0.9.

The derivation is in Appendix 1. For the specific case that [α, β] = [0.05, 0.9], which is reasonable

for daily asset returns, the DMW0 statistic is greater than 1.96 for sample sizes larger than 145.

Thus with less than a year’s worth of daily data, we would expect to reject the true conditional

variance in favour of a volatility forecast equal to around 0.64 times the true conditional variance.

This example shows that choosing an inappropriate loss function for volatility forecast comparison

can have important empirical implications in realistic situations.

2.2 Using better volatility proxies

It has long been known that squared returns are a quite noisy proxy for the true conditional

variance. One alternative volatility proxy that has gained much attention recently is “realised

volatility”, see Andersen, et al. (2001a, 2003), and Barndorff-Nielsen and Shephard (2002, 2004).

Another commonly-used alternative to squared returns is the intra-daily range. It is well-known

that if the log stock price follows a Brownian motion then both of these estimators are unbiased

and more efficient than the squared return.

In this section we obtain the rate at which the distortion in the ranking of alternative forecasts

disappears when using realised volatility as the proxy, as the sampling frequency increases, for a

simple data generating process (DGP). These results can be viewed as complements to that of

Hansen and Lunde (2006), who showed that under certain conditions the degree of distortion in
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ranking alternative forecasts is increasing in the variability of the proxy error.

Assume that there are m equally-spaced observations per trade day, and let ri,m,t denote the ith

intra-daily return on day t. In order to obtain analytical results for problems involving the range

as a volatility proxy we consider only a simple DGP: zero mean return, no jumps, and constant

conditional volatility within a trade day8. Chen and Patton (2006) present corresponding results

for a range of more realistic DGPs via simulation. Let

rt = d logPt = σtdWt (17)

στ = σt ∀τ ∈ (t− 1, t] (18)

ri,m,t ≡
i/mZ

(i−1)/m

rτdτ = σt

i/mZ
(i−1)/m

dWτ (19)

so {ri,m,t}mi=1 ∼ iidN

µ
0,
σ2t
m

¶
(20)

We place no constraints on how σ2t changes between trade days, though the assumption of constant

intra-daily volatility is clearly restrictive. The “realised volatility” or “realised variance” is defined

as:

RVt ≡
mX
i=1

r2i,m,t

Realised variance, like the daily squared return (which is obtained in the above framework by

setting m = 1), is a conditionally unbiased estimator of the daily conditional variance. Its main

advantage is that it is more efficient estimator than the daily squared return: for this DGP it can

be shown that MSEt−1
£
r2t
¤
= 2σ4t while MSEt−1 [RVt] = 2σ4t /m.

A volatility proxy that pre-dates realised volatility by many years is the range, or the high/low,

estimator, see Parkinson (1980), Garman and Klass (1980) and Ball and Torous (1984). Alizadeh,

et al. (2002) use the fact that the range is widely available and is more efficient than squared returns

to improve the estimation of stochastic volatility models. The intra-daily log range is defined as:

RGt ≡ max
τ
logPτ −min

τ
logPτ , t− 1 < τ ≤ t (21)

Under the dynamics in equation (17) Feller (1951) presented the density of RGt, and Parkinson

(1980) presented a formula for obtaining moments of the range, which enable us to compute:

Et−1
£
RG2t

¤
= 4 log (2) · σ2t ≈ 2.7726σ2t (22)

8Analytical and empirical results on the range and “realised range” under more flexible DGPs are presented in

two recent working papers by Christensen and Podolskij (2005) and Martens and van Dijk (2005).

9



Details on the distributional properties of the range under this DGP are presented in Appendix

1. The above expression shows that squared range is not a conditionally unbiased estimator of σ2t .

Most authors, see Parkinson (1980) and Alizadeh, et al. (2002) for example, who employ the range

as a volatility proxy are aware of this and scale the range accordingly. We will thus focus below on

the adjusted range:

RG∗t ≡
RGt

2
p
log (2)

≈ 0.6006RGt (23)

which, when squared, is an unbiased proxy for the conditional variance. Using the results of

Parkinson (1980) it is simple to determine thatMSEt−1
£
RG∗2t

¤
≈ 0.4073σ4t , which is approximately

one-fifth of the MSE of the daily squared return, and so using the range yields an estimator as

accurate as a realised volatility estimator constructed using 5 intra-daily observations. This roughly

corresponds to the comment of Andersen and Bollerslev (1998, footnote 20) that the adjusted range

yields an MSE comparable to the MSE of realised volatilities constructed using 2 to 3 hour returns.

We now determine the optimal forecasts obtained using the various loss functions considered

above, when σ̂2t = RVt or σ̂2t = RG∗2t is used as a proxy for the conditional variance rather than r2t .

We initially leave m unspecified for the realised volatility proxy, and then specialise to three cases:

m = 1, 13 and 78, corresponding to the use of daily, half-hourly and 5-minute returns, on a stock

listed on the New York Stock Exchange (NYSE).

For MSE and QLIKE the optimal forecast is simply the conditional mean of σ̂2t , which equals

the conditional variance, as RVt and RG∗2t are both conditionally unbiased. The MSE-SD loss

function yields (Et−1 [σ̂t])
2 as an optimal forecast. Under the set-up introduced above,

RVt ≡
mX
i=1

r2t,i =
σ2t
m

mX
i=1

ε2t,i

so mσ−2t RVt ∼ χ2m

so h∗t =
σ2t
m

³
E
hp

χ2m

i´2
E
hp

χ2m

i
≈
√
m− 1

4
√
m
by a Taylor series approximation

so h∗t ≈ σ2t

µ
1− 1

2m
+

1

16m2

¶

≈

⎧⎪⎪⎨⎪⎪⎩
0.5625 · σ2t for m = 1

0.9619 · σ2t for m = 13

0.9936 · σ2t for m = 78

The results for the MSE-SD loss function using realised volatility show that reducing the noise
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in the volatility proxy improves the optimal forecast, consistent with Hansen and Lunde (2006).9

Using the range we find that

h∗t = (Et−1 [RG
∗
t ])
2 =

2

π log 2
σ2t ≈ 0.9184σ2t

and so the distortion from using the range is approximately equal to that incurred when using a

realised volatility constructed using 6 intra-daily observations.

Consider now the MAE loss function, which yields Mediant−1
£
σ̂2t
¤
as the optimal forecast. For

realised volatility we thus have

h∗t =
1

m
Median

£
χ2m
¤
σ2t

For largem,Median
£
χ2m
¤
≈ m−2/3, though most software packages have functions for the inverse

cdf of a χ2m distribution. For smallm the approximation Median
£
χ2m
¤
≈ m − 2/3 + 1/ (9m) is

more accurate. Thus

h∗t ≈
µ
1− 2

3m
+

1

9m2

¶
σ2t

≈

⎧⎪⎪⎨⎪⎪⎩
0.4444 · σ2t for m = 1

0.9494 · σ2t for m = 13

0.9915 · σ2t for m = 78

using Median
£
χ2m
¤
≈ m− 2/3 + 1/ (9m)

For the range we have

h∗t ≈
2.2938

log 16
σ2t = 0.8273σ

2
t

which is equivalent to using about 4 observations to construct the realised volatility proxy. Calcu-

lations for the remaining loss functions are collected in Appendix 1, and the results are summarised

in Table 2.

The results in Table 2 confirm that as the proxy used to measure the true conditional variance

gets more efficient the degree of distortion decreases for all loss functions. Across loss functions

we found that the range was generally approximately as good a volatility proxy as the realised

volatility estimator constructed with between 4 and 6 intra-daily observations. Using half-hour

returns (13 intra-daily observations) or the intra-daily range still leaves substantial distortions in

the optimal forecasts, but using 5-minute returns (78 intra-daily observations) eliminates almost

all of the bias, at least in this simple framework10.
9Note that the result for m = 1 is different to that obtained in Section 2, which was h∗t =

2
πσ

2
t ≈ 0.6366σ2t . This

is because for m = 1 we can obtain the expression exactly, using results for the normal distribution, whereas for

arbitrary m we relied on a second-order Taylor series approximation.
10Chen and Patton (2006) find very similar results to those in Table 2 when the DGP is specified to be log-normal,
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2.3 General comments on non-robust loss functions

The sources of the mis-matches between the optimal forecast for a given loss function and the

true conditional variance are easily identified. The MAE, MAE-SD and MAE-prop loss functions

consider mean absolute distances rather than mean squared distances, which then naturally change

the solution of the optimisation problem from an expectation to a median. For the MSE-log, MSE-

SD and MSE-prop loss functions the distortion follows from the fact that the unbiasedness property

is not invariant to nonlinear transformations.

In all of these cases the distortions can be remedied if one can obtain a conditionally unbiased

estimator of the quantity of interest (σt, log σ2t , etc.) either exactly or approximately. When using

the squared return as a proxy, this will generally require an assumption about the entire conditional

distribution of returns. When using realised variance as a volatility proxy one may obtain an

approximate distribution of the volatility proxy under relatively mild assumptions, by drawing on

the distribution theory for realised volatility developed in Barndorff-Nielsen and Shephard (2004)

and extensions, as in Andersen, et al. (2005a). On the other hand, when using a robust loss

function only the assumption of conditional unbiasedness of the proxy is required, which is often

satisfied under much weaker assumptions and requires no adjustment of the proxy.

We now seek to identify the reason why some non-robust loss function yield upward-biased

forecasts, whilst others yield downward-biased forecasts. We do so by generalising the results

from the previous sections to a broad class of arbitrary loss functions, making use of Taylor series

approximations. This requires some differentiability assumptions on the loss function, which are

not satisfied for some of the loss functions considered above.

Assumption T1: The volatility proxy satisfies: Et−1
£
σ̂2t,m

¤
= σ2t and Vt−1

£
σ̂2t,m

¤
= ν2t,m

Assumption T2: The loss function L is three times differentiable.

Assumption T3: The loss function L is such that L
¡
σ2, h

¢
= 0 iff h = σ2

Assumption T4: The loss function L is such that ∂L
¡
σ2, h

¢
∂h T 0 if σ2 S h

Assumption T5: The volatility proxy and the loss function are such that L
¡
σ̂2t,m, h

¢
−

L
¡
σ2t , h

¢
→p 0 as m→∞ uniformly on H.

Proposition 1 Define

h∗t,m ≡ argmin
h∈H

Et−1
£
L
¡
σ̂2t,m, h

¢¤
GARCH or two-factor stochastic volatility diffusions. Using the same parameterisations as those in the simulations of

Goncalves and Meddahi (2005), they find slightly larger biases from the non-robust loss functions under these DGPs,

but they generally differ from those in Table 2 only in the second decimal place.
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(i) Let assumptions T1-T4 hold. Then

∂3L
¡
σ2, h

¢
∂ (σ2)2 ∂h

T 0 for all
¡
σ2, h

¢
⇒ h∗t,m S σ2t

(ii) Let assumptions T3-T5 hold. Then h∗t,m →p σ2t as m→∞.

The first part of the above proposition shows that it is the sign of the third derivative of the

loss function that determines whether the optimal forecast is above, below or equal to the true

conditional variance. The case that this third derivative is equal to zero, and thus that the optimal

forecast is the conditional variance, corresponds to a result of Hansen and Lunde (2006). The third

derivative is always positive for the MSE-log and MSE-SD loss functions, and so part (i) above

implies that h∗t,m < σ2t for these loss functions, which is consistent with the results in Tables 1 and

2. Alternatively, for the MSE-prop loss function this third derivative is always negative, implying

that h∗t,m > σ2t for this loss function, which is again consistent with Tables 1 and 2.

The second part of the above proposition shows that under the high-level assumption of uniform

convergence of L
¡
σ̂2t,m, h

¢
to L

¡
σ2t , h

¢
, the optimal forecast converges to the conditional variance

as m→∞. Thus even loss functions that cause distortions in the presence of noise in the volatility
proxy can generate optimal forecasts that are consistent for the conditional variance, and so non-

robust loss functions may be used in conjunction with proxies that can be assumed “nearly” perfect.

3 A class of robust loss functions

In the previous section we showed that amongst nine loss functions commonly used to compare

volatility forecasts, only the MSE and the QLIKE loss functions lead to h∗t = Et−1
£
σ̂2t
¤
= σ2t ,

which is a necessary condition for a loss function to be robust to noise in the volatility proxy. The

following proposition provides a necessary and sufficient class of robust loss functions, which are

related to the class of linear-exponential densities of Gourieroux, et al. (1984), and to the work of

Gourieroux, et al. (1987). We make the following assumptions:

A1: Et−1
£
σ̂2t
¤
= σ2t

A2: σ̂2t |Ft−1 ∼ Ft ∈ F̃ , the set of all absolutely continuous distribution functions on R+.

A3: L is twice continuously differentiable with respect to h and σ̂2, and has a unique minimum

at σ̂2 = h.

A4: There exists some h∗t ∈ int (H) such that h∗t = Et−1
£
σ̂2t
¤
, where H is a compact subset of

R++.
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A5: L and Ft are such that: (a) Et−1
£
L
¡
σ̂2t , h

¢¤
<∞ for some h ∈ H; (b)

¯̄
Et−1

£
∂L
¡
σ̂2t , σ

2
t

¢
/∂h

¤¯̄
<∞; and (c)

¯̄
Et−1

£
∂2L

¡
σ̂2t , σ

2
t

¢
/∂h2

¤¯̄
<∞ for all t.

Proposition 2 Let assumptions A1 to A5 hold. Then a loss function L is robust, in the sense of

Definition 1, if and only if it takes the following form:

L
¡
σ̂2, h

¢
= C̃ (h) +B

¡
σ̂2
¢
+ C (h)

¡
σ̂2 − h

¢
(24)

where B and C are twice continuously differentiable, C is a strictly decreasing function on H, and
C̃ is the anti-derivative of C.

Remark 1 If we normalise the loss function to yield zero loss when σ̂2 = h, then the class of

robust loss functions takes the form:

L
¡
σ̂2, h

¢
= C̃ (h)− C̃

¡
σ̂2
¢
+ C (h)

¡
σ̂2 − h

¢
(25)

where C is a twice continuously differentiable, strictly decreasing function on H, and C̃ is the

anti-derivative of C.

Given the widespread interest in economics and finance in loss functions that depend only on

the forecast error or the standardised forecast error, we present below a surprising result on the

subset of robust loss functions that satisfy one of these restrictions.

Proposition 3 (i) The “MSE” loss function is the only robust loss function that depends solely

on the forecast error, σ̂2 − h.

(ii) The “QLIKE” loss function is the only robust loss function that depends solely on the

standardised forecast error, σ̂2/h.

The general representation of robust loss functions in Proposition 2 provides a simple means

of determining whether a given loss function is suitable for use in volatility forecast comparison,

but it does not directly provide new alternative robust loss functions. To this end, we now seek to

find a parametric family of loss functions, that is a member of the class proposed above, and which

nests MSE and QLIKE as special cases. We do this by noting that the first-order conditions from

MSE and QLIKE loss functions are both of the form:

∂L
¡
σ̂2, h

¢
∂h

= 0 = ahb
¡
σ̂2 − h

¢
, a < 0, b ∈ R (26)

From this first-order condition we obtain the following parametric family of robust loss functions.

Part (ii) below shows that this parametric family coincides with the subset of homogeneous robust

loss functions.
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Proposition 4 (i) The following family of functions

L
¡
σ̂2, h; b

¢
=

⎧⎪⎪⎨⎪⎪⎩
1

(b+1)(b+2)(σ̂
2b+4 − hb+2)− 1

b+1h
b+1

¡
σ̂2 − h

¢
, for b /∈ {−1,−2}

h− σ̂2 + σ̂2 log σ̂2

h , for b = −1
σ̂2

h − log
σ̂2

h − 1, for b = −2

(27)

satisfy L (h, h; b) = 0 for all h ∈ H, and are of the form in Proposition 2.

(ii) The family of loss functions in part (i) corresponds to the entire subset of homogeneous

robust loss functions. The degree of homogeneity is equal to b+ 2.

The MSE loss function is obtained when b = 0 and the QLIKE loss function is obtained when

b = −2, up to additive and multiplicative constants. In Figure 3 we present the above class of
functions for various values of b, ranging from 1 to −5, and including the MSE and QLIKE cases.
This figure shows that this family of loss functions can take a wide variety of shapes, ranging from

symmetric (b = 0, corresponding to the MSE loss function) to asymmetric, with heavier penalty

either on under-prediction (b < 0) or over-prediction (b > 0). Figure 4 plots the ratio of losses

incurred for negative forecast errors to those incurred for positive forecast errors, to make clearer

the form of asymmetries in these loss functions.

Given the arbitrariness of the choice of units in most economic and financial problems (for

example, measuring prices in dollars versus cents, or measuring returns in percentages versus deci-

mals) it is potentially interesting to consider the impact of a simple change in units on the ranking

of two competing forecasts by expected loss. The class of loss functions presented in Proposition

2 guarantees that the true conditional variance will be chosen (subject to sampling variation) over

any other forecast regardless of the choice units. However it does not guarantee that the ranking of

two imperfect forecasts will be invariant to the choice of units. The following proposition shows that

by using a homogeneous robust loss function, as in Proposition 4, the ranking of any two (possibly

imperfect) forecasts is invariant to a re-scaling of the data. It further provides an example where

the ranking can be reversed simply with a re-scaling of the data if a non-homogeneous robust loss

function is used.

Proposition 5 (i) The ranking of any two (possibly imperfect) volatility forecasts by expected loss

is invariant to a re-scaling of the data if the loss function is robust and homogeneous.

(ii) The ranking of any two (possibly imperfect) volatility forecasts by expected loss may not be

invariant to a re-scaling of the data if the loss function is robust but not homogeneous.

Having presented a new class of loss functions, it is next of interest to establish the conditions

under which we can employ these loss functions in DMW tests for volatility forecast comparison.
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The main conditions to be determined are moment conditions on the volatility proxy and volatility

forecasts, and these are presented in part (ii) of the following proposition.

Proposition 6 Let dt (b) ≡ L
¡
σ̂2t , h1t; b

¢
− L

¡
σ̂2t , h2t; b

¢
. (i) For a given loss function parameter

b, and given that

1. (a) dt (b) = d0 (b) + εt (b), t = 1, 2, ...; d0 (b) ∈ R,

(b) {dt (b)} is a mixing sequence with either φ of size −r/2 (r − 1) for some r ≥ 2, or α of
size −r/ (r − 2) for some r > 2,

(c) E [dt (b)] = d0 (b) for t = 1, 2, ...,

(d) E [|dt (b)|r] < ∆ <∞ for all t, and

(e) Vn (b) ≡ V
£
n−1/2

Pn
t=1 εt (b)

¤
is uniformly positive definite.

Then √
n
¡
d̄ (b)− d0 (b)

¢p
Vn (b)

→D N (0, 1) , as n→∞

where d̄n (b) ≡ n−1
Pn

t=1 dt (b). Under H0 : E [dt (b)] = 0, we have:

DMWn (b) ≡
√
nd̄n (b)q

V̂
£√

nd̄n (b)
¤ →D N (0, 1) as n→∞

where V̂
£√

nd̄n (b)
¤
is any consistent estimator of V

£√
nd̄n (b)

¤
. If E [dt (b)] 6= 0 then DMWn (b)→

±∞.
(ii) Sufficient conditions for E

h
dt (b)

2
i
<∞ are

1. inft hit ≡ ci > 0 for i = 1, 2,

2. E [hpit] <∞, i = 1, 2, and

3. E [σ̂qt ] <∞,

where p and q are as follows:

p = max [0, 2b+ 4] , q = max [4 + δ, 4b+ 8] , for δ > 0, when b /∈ {−1,−2}
p = 2 (e+ 1) /e ≈ 2.74, q = 4 (e+ 1) /e ≈ 5.47, when b = −1
p = 2/e+ δ ≈ 0.74 + δ, q = 4 + δ, for δ > 0, when b = −2

where e is the exponential constant, e ≈ 2.71.
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The assumption that the volatility forecasts will never be less than some positive threshold is

true for many standard volatility models, such as the GARCH(1,1), for example. Part (ii) of the

above proposition show how greatly the moment conditions can vary depending on the choice of

loss function shape parameter b. For MSE loss, corresponding to b = 0, we need E
£
h4it
¤
and E

£
σ̂8t
¤

to be finite, whereas for the QLIKE loss function we only require E
h
h
2/e+δ
it

i
and E

h
σ̂4+δt

i
, for

δ > 0, to be finite. Choosing b ≤ −2 is recommended if the existence of moments of the volatility
proxy or volatility forecasts is a concern.

4 Empirical application to forecasting IBM return volatility

In this section we consider the problem of forecasting the conditional variance of the daily return

on IBM, using data from the TAQ database over the period from January 1993 to December 2003.

We consider two simple volatility models that are widely-used in industry: a 60-day rolling window

estimator, and the RiskMetrics volatility model based on daily returns:

Rolling window : h1t =
1

60

X60

j=1
r2t−j (28)

RiskMetrics : h2t = λh2t−1 + (1− λ) r2t−1, λ = 0.94 (29)

We use approximately the first year of observations (272 observations) to initiate the RiskMetrics

forecasts, and the remaining 2500 observations to compare the forecasts. A plot of the volatility

forecasts is provided in Figure 5.

We employ a variety of volatility proxies in the comparison of these forecasts: the daily squared

return, and realised variance computed using 65-minute, 15-minute and 5-minute returns11. In

comparing these forecasts we present the results of Diebold-Mariano-West tests using the loss

function presented in Proposition 4, for five different choices of the loss function parameter: b =

{1, 0,−1,−2,−5}. MSE loss and QLIKE loss correspond to b = 0 and b = −2 respectively. Recall
from the previous section that different choices of b require weaker or stronger moment conditions

for the DMW test to be valid. For b = −5 we only require E
h
σ̂4+δt

i
< ∞ for δ > 0, whereas for

b = 1 we need E
£
h6it
¤
< ∞ and E

£
σ̂12t
¤
< ∞. These assumptions should be kept in mind when

interpreting the results below.

Table 3 presents the results of standard Mincer-Zarnowitz tests of the volatility forecasts. Both

the rolling window and the RiskMetrics forecasts are rejected using all four volatility proxies, with

11We use 65-minute returns rather than 60-minute returns so that there are an even number of intervals within the

NYSE trade day, which runs from 9.30am to 4pm.
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MZ test p-values equal to 0.00 in all cases. We can thus conclude that neither of these forecasts is

optimal. This conclusion leads then to the question of relative forecast performance, for which we

use a DMW test.

In Table 4 we present tests comparing the RiskMetrics forecasts based on daily returns with

the 60-day rolling window volatility forecasts. The only loss function for which the difference in

forecast performance is significantly different from zero is the QLIKE loss function: the difference

is significant at the 0.05 level using 65-minute, 15-minute and 5-minute realised variances as the

volatility proxy, and significant at the 0.10 level using daily squared returns as the proxy. In all

of these cases the t-statistic is positive, indicating that the rolling window forecasts generated

larger average loss than the RiskMetrics forecasts. Interestingly, under MSE loss, the differences

in average loss favour the rolling window forecasts, though these differences are not statistically

significant.

5 Conclusion

We analytically demonstrated some problems with volatility forecast comparison techniques used

in the literature. These techniques invariably rely on a volatility proxy, which is some imperfect

estimator of the true conditional variance, and the presence of noise in the volatility proxy can lead

an imperfect volatility forecast being selected over the true conditional variance for certain choices

of loss function. We showed analytically that less noisy volatility proxies, such as the intra-daily

range and realised volatility, lead to less distortion, though in some cases the degree of distortion

is still large.

We derived necessary and sufficient conditions on the loss function for it to yield rankings of

volatility forecasts that are robust to noise in the proxy. We also proposed a new parametric

family of robust loss functions and derived the moment conditions necessary for the use of this

loss function in forecast comparison tests. The new family of loss function nests both squared-

error and the “QLIKE” loss functions, two of the most widely-used in the volatility forecasting

literature. A small empirical study of IBM equity volatility illustrated the new loss functions in

forecast comparison tests.

Whilst volatility forecasting is a prominent example of a problem in economics where the variable

of interest is unobserved, there are many other such examples: forecasting the true rates of inflation

or GDP growth (not simply the announced rates); forecasting trade intensities; forecasting default

probabilities or ‘crash’ probabilities; and forecasting covariances or correlations. The derivations in
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this paper exploited the fact that the latent variable of interest in volatility forecasting (namely the

conditional variance) is a positive random variable, and the proxy is non-negative and continuously

distributed. Extending the results in this paper to handle latent variables of interest with support

on the entire real line, as would be required for applications to studies of the “true” rates of growth

in macroeconomic aggregates or to conditional covariances, should not be difficult. Extending

our results to handle proxies with discrete support, such as those that would be used in default

forecasting applications, may require a different method of proof. We leave such extensions to

future research.

6 Appendix 1: Supporting calculations for Section 2

Section 2.1:

Optimal forecasts under alternative loss functions. Recall that εt ≡ rt/σt.

MSE-log:

h∗t = exp
©
Et−1

£
log ε2t

¤ª
σ2t

=

⎧⎨⎩ (ν − 2) exp
©
Ψ
¡
1
2

¢
−Ψ

¡
ν
2

¢ª
σ2t , if rt|Ft−1 ∼ Student’s t

¡
0, σ2t , ν

¢
, ν > 2

1
2 exp {−γE}σ2t ≈ 0.28σ2t , if rt|Ft−1 ∼ N

¡
0, σ2t

¢
where Ψ is the digamma function and γE = −Ψ (1) ≈ 0.58 is Euler’s constant, see Harvey, et al. (1994).

MSE-prop:

h∗t =
Et−1

£
r4t
¤

Et−1
£
r2t
¤ = Kurtosist−1 [rt]σ

2
t

=

⎧⎨⎩ 3
³
ν−2
ν−4

´
σ2t , if rt|Ft−1 ∼ Student’s t

¡
0, σ2t , ν

¢
, ν > 4

3σ2t , if rt|Ft−1 ∼ N
¡
0, σ2t

¢
QLIKE: h∗t = Et−1

£
r2t
¤
= σ2t

MAE-log: h∗t = exp
©
Mediant−1

£
log ε2t

¤ª
σ2t =Mediant−1

£
ε2t
¤
σ2t , since Median [log (X)] =

log (Median [X]) for any non-negative random variable X. Thus the optimal forecast is identical to that

under MAE loss, which is given in the body of the paper.

MAE-SD: h∗t = (Mediant−1 [|εt|])2 σ2t =Mediant−1
£
ε2t
¤
σ2t , sinceMedian [X]2 =Median

£
X2
¤

for any non-negative random variable X. Thus the optimal forecast is identical to that under MAE loss,

which is given in the body of the paper.
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MAE-prop: If r2t |Ft−1 ∼ Ft
¡
σ2t
¢
and ε2t ≡ r2t /σ

2
t |Ft−1 ∼ Gt (1) then

FOC 0 =

Z h∗t

0

r2t
h∗t

ft
¡
r2t
¢
dr2t −

Z ∞

h∗t

r2t
h∗t

ft
¡
r2t
¢
dr2t

so
Z h∗t

0

r2t
h∗t

ft
¡
r2t
¢
dr2t =

Z ∞

h∗t

r2t
h∗t

ft
¡
r2t
¢
dr2t

Ft (h
∗
t )Et−1

∙
r2t
h∗t

¯̄̄̄
r2t ≤ h∗t

¸
= (1− Ft (h

∗
t ))Et−1

∙
r2t
h∗t

¯̄̄̄
r2t > h∗t

¸
without loss of generality let h∗t ≡ σ2tγ

∗
t , γ

∗
t > 0, so

Ft
¡
σ2tγ

∗
t

¢
Et−1

∙
ε2t
γ∗t

¯̄̄̄
ε2t ≤ γ∗t

¸
=

¡
1− Ft

¡
σ2tγ

∗
t

¢¢
Et−1

∙
ε2t
γ∗t

¯̄̄̄
ε2t > γ∗t

¸
Gt (γ

∗
t )Et−1

£
ε2t
¯̄
ε2t ≤ γ∗t

¤
= (1−Gt (γ

∗
t ))Et−1

£
ε2t
¯̄
ε2t > γ∗t

¤
If ε2t |Ft−1 ∼ G (1), then γ∗t = γ∗ ∀ t. Finding an explicit expression for h∗t is difficult, and so we used

10,000 simulated draws for ν = {4, 6, 10, 20, 30, 50, 100, 1000,∞} and numerically obtained h∗t for each

ν. We then used OLS to find the approximation given in Table 1, which yielded an R2 of 0.9667.

DMW test using MSE-SD loss: We have

dt = (|rt|− σt)
2 −

³
|rt|−

p
2/πσt

´2
and we seek to find an expression for DMW0 as a function of (ω, α, β, n), where DMW0 ≡
V
£√

nd̄n
¤−1/2√

nE [dt]. In the interests of parsimony we present results under the incorrect assump-

tion that dt is serially uncorrelated, which leads to the simplification DMW0 = V [dt]
−1/2√nE [dt] . In

unreported work we also derived the variance allowing for serial correlation in dt and found that accounting

for the serial correlation does not change the conclusion significantly. The serial correlation in dt turns out

to be negative, and so the correct variance is slightly smaller than the naïve variance estimator used, which

makes the coefficient on
√
n even larger.

dt = (|rt|− σt)
2 −

³
|rt|−

p
2/πσt

´2
= (1− 2/π)σ2t + 2

³p
2/π − 1

´
|εt|σ2t

so E [dt] =
³
1−

p
2/π

´2
E
£
σ2t
¤

and

E
£
d2t
¤
= E

∙
σ4tEt−1

∙³
1− 2/π + 2 |εt|

³p
2/π − 1

´´2¸¸
=

³
1−

p
2/π

´3 ³
5 + 3

p
2/π

´
E
£
σ4t
¤
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The quantities E
£
σ2t
¤
and E

£
σ4t
¤
depend on the DGP for the returns, and in this case they equal:

E
£
σ2t
¤
=

ω

1− α− β
, if α+ β < 1

E
£
σ4t
¤
=

ω2 (1 + α+ β)³
1− (α+ β)2 − 2α2

´
(1− α− β)

, if
³
1− (α+ β)2 − 2α2

´
> 0

so

DMW0 =

√
n
³
1−

p
2/π

´2
E
£
σ2t
¤r³

1−
p
2/π

´3 ³
5 + 3

p
2/π

´
E
£
σ4t
¤
−
³
1−

p
2/π

´4
E
£
σ2t
¤2

=

Ã
5 + 3

p
2/π

1−
p
2/π

1− (α+ β)2

1− (α+ β)2 − 2α2
− 1
!−1/2√

n

as stated in the text. Note that the parameter ω does not affect the statistic.

Section 2.2:

Wherever possible we derived solutions or approximate solutions analytically. This was not always

possible and so in some cases we had to resort to simulations to obtain solutions. Feller (1951) presents the

density of the range:

f (RGt;σt) = 8
∞X
k=1

(−1)k−1 k
2

σt
φ

µ
k ·RGt

σt

¶
where φ is the standard normal pdf . For practical purposes the sum in the above expression needs to be

truncated at some finite value; we truncate at k = 1000. Parkinson (1980) presented the cdf of the range,

and a formula for obtaining moments:

F (RGt;σt) =
∞X
k=1

(−1)k−1 k
½
erfc

µ
(k + 1)RGt

σ
√
2

¶
− 2erfc

µ
k ·RGt

σ
√
2

¶
+ erfc

µ
(k − 1)RGt

σ
√
2

¶¾
E [RGp

t ] =
4√
π
Γ

µ
p+ 1

2

¶³
2p/2 − 22−p/2

´
ζ (p− 1)σpt , for p ≥ 1

where erfc(x) ≡ 1− erf(x), erf(x) is the ‘error function’: erf (x) ≡ 2/√π
R∞
0 e−t

2
dt. ζ is the Riemann

zeta function. From this expression we can obtain the necessary moments for computing optimal forecasts

when the range is used as a volatility proxy. For the first and second moments of RGt we can obtain simple

expressions, but the fourth moment involves ζ (3) = Σ∞k=1k
−3 which is an irrational number, and thus only

a numerical expression is available. In addition to the moments of RGt, we will need the mean of logRGt

and the median of RGt. We used quadrature and OLS to obtain the expression12:

Et−1 [logRGt] = 0.4257 + log σt (30)
12We used quadrature to estimate Et−1 [logRGt] for σt = 0.5, 1, 1.5, ..., 10. We then regressed these esti-

mates on a constant and log σt to obtain the parameter estimates. The R2 from this regression was 1.0000.
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which is consistent with the expression given in Alizadeh, et al. (2002). We numerically inverted the cdf of

the range, given in Parkinson (1980), and used OLS to determine the following relation13:

Mediant−1 [RGt] = 1.5145σt

so Mediant−1
£
RG2t

¤
= 2.2938σ2t , since RGt is weakly positive.

MSE-LOG: h∗t = exp
©
Et−1

£
log σ̂2t

¤ª
. A Taylor series approximation did not provide a good fit

when considering realised variance as a proxy, and so we resorted to simulations. We simulated 50,000 “days”

worth of observations, where the number of observations per day considered was m =

{1, 3, 5, 7, 10, 13, 20, 40, 60, 78, 100}. The following expression yielded anR2 of 0.9959 : Et−1
h
logRV

(m)
t

i
≈

−1.2741/m, so the optimal forecast under our DGP assumption is h∗t ≈ σ2t e
−1.2741/m.

For the range we find that

Et−1
£
logRG∗2t

¤
= 2Et−1 [logRG

∗
t ]

= −0.1684 + log σ2t
so h∗t = e−0.1684σ2t ≈ 0.8450σ2t

MAE-log: The optimal forecast is h∗t = Mediant−1
£
σ̂2t
¤
, since σ̂2t is weakly positive we know that

log
¡
Mediant−1

£
σ̂2t
¤¢
= Mediant−1

£
log σ̂2t

¤
, and so the results for this loss function are identical to

those for the MAE loss function.

MAE-SD: The optimal forecast is h∗t =Mediant−1
£
σ̂2t
¤
. Since σ̂2t is weakly positive we know that

Mediant−1
£
σ̂2t
¤
= (Mediant−1 [σ̂t])

2, and so the results for this loss function are identical to those for

the MAE loss function.

MSE-prop: h∗t = Et−1
£
σ̂4t
¤
/Et−1

£
σ̂2t
¤
. When realised volatility is used as the proxy we find: h∗t =¡

1
mKurtosist−1 [rt,i] +

m−1
m

¢
σ2t =

¡
1 + 2

m

¢
σ2t . For the range we find that: h

∗
t = 10.8185/

³
(log 16)2

´
σ2t ≈

1.4073σ2t .

MAE-prop: For realised variance, like the daily squared return, obtaining an analytical, even approx-

imate, solution to this problem is difficult and so we used simulations. In the set-up given in the text it

is again possible to show that the optimal forecast is of the form h∗t = γ∗σ2t . For realised volatility we

simulated 50,000 “days” worth of observations, where the number of observations per day considered was

13The R2 from this relation for σ = 0.5, 1, 1.5, ..., 10 was 1.0000.
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m = {1, 3, 5, 7, 10, 13, 20, 40, 60, 78, 100}, and used numerical methods to locate the optimum forecast.

The following expression yielded an R2 of 0.9999 : h∗t ≈
¡
1 + 1.3624

m

¢
σ2t . For the range we again used a

numerical minimisation algorithm combined with quadrature to compute the expectation in the optimisation

problem: h∗t ≈ 0.9941σ2t .

7 Appendix 2: Proofs of Propositions

Proof of Proposition 1. (i) Approximate the loss function L with a second-order Taylor series:

L
¡
σ̂2t,m, h

¢
≈ L

¡
σ2t , h

¢
+

∂L
¡
σ2t , h

¢
∂σ2t

¡
σ̂2t,m − σ2t

¢
+
1

2

∂2L
¡
σ2t , h

¢
∂
¡
σ2t
¢2 ¡

σ̂2t,m − σ2t
¢2

so Et−1
£
L
¡
σ̂2t,m, h

¢¤
≈ L

¡
σ2t , h

¢
+

1

2m

∂2L
¡
σ2t , h

¢
∂
¡
σ2t
¢2 ν2t,m

by assumption T1. The first-order condition for forecast optimality is

0 = Et−1

"
∂L
¡
σ̂2t,m, h

∗
t,m

¢
∂h

#

≈
∂L
¡
σ2t , h

∗
t,m

¢
∂h

+
1

2m

∂3L
¡
σ2t , h

∗
t,m

¢
∂
¡
σ2t
¢2
∂h

ν2t,m

In the absence of noise in the volatility proxy (i.e. ν2t,m = 0) the second term above would equal zero

and the first-order condition would be the same as if the true conditional variance was observable.

By assumption T4 this yields h∗t,m = σ2t . One of the conditions of Hansen and Lunde (2006) was

∂3L
¡
σ2, h

¢
/∂
¡
σ2
¢2
∂h = 0, which implies that the second term above equals zero even in the

presence of a noisy volatility proxy. For loss functions that yield ∂3L
¡
σ2, h

¢
/∂
¡
σ2
¢2
∂h 6= 0 the

presence of noise in the volatility proxy distorts the first-order condition from what it would be in the

absence of noise, and thus affects the optimal forecast. If ∂3L
¡
σ2, h

¢
/∂
¡
σ2
¢2
∂h > (<) 0 ∀

¡
σ2, h

¢
,

then the FOC implies that we must have ∂L
¡
σ2t , h

∗
t,m

¢
/∂h < (>) 0, which implies that h∗t,m <

(>) σ2t , by assumption T4.

(ii) Follows from Theorem 3.4 of White (1994), noting that assumptions T3 and T4 imply that

h∗ = σ2 is the unique solution to the problem minh∈H L
¡
σ2, h

¢
.

Proof of Proposition 2. We prove this proposition by showing the equivalence of the

following three statements:

S1: The loss function takes the form given the statement of the proposition;

S2: The loss function is robust in the sense of Definition 1;
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S3: The optimal forecast under the loss function is the conditional variance.
We will show that S1⇒ S2, and then that S1⇔ S3, and finally that S2⇒ S3.
That S1⇒ S2 follows from Hansen and Lunde (2006): their assumption 2 is satisfied given the

assumptions for the proposition and noting that ∂2L
¡
σ̂2, h

¢
/∂
¡
σ̂2
¢2
= B00

¡
σ̂2
¢
does not depend

on h.

We next show that S1⇒ S3: The first-order condition defining the optimal forecast is:

0 =
∂

∂h

¡
Et−1

£
L
¡
σ̂2t , h

∗
t

¢¤¢
=

∂

∂h

³
C̃ (h∗t ) +Et−1

£
B
¡
σ̂2t
¢¤
+ C (h∗t )

¡
Et−1

£
σ̂2t
¤
− h∗t

¢´
= C 0 (h∗t )

¡
Et−1

£
σ̂2t
¤
− h∗t

¢
which implies h∗t = Et−1

£
σ̂2t
¤
since C is a strictly decreasing function. The second-order condition

is also satisfied: ∂2
¡
Et−1

£
L
¡
σ̂2t , h

∗
t

¢¤¢
/∂h2 = C 00 (h∗t )

¡
Et−1

£
σ̂2t
¤
− h∗t

¢
− C 0 (h∗t ) = −C0 (h∗t ) > 0,

since h∗t = Et−1
£
σ̂2t
¤
and C is strictly decreasing.

Proving S3 ⇒ S1 is more challenging. For this part we follow the proof of Theorem 1 of

Komunjer and Vuong (2004), adapted to our problem. We seek to show that the functional form of

the loss function given in the proposition is necessary for h∗t = Et−1
£
σ̂2t
¤
, for any Ft ∈ F̃ . Notice

that we can write
∂L
¡
σ̂2t , ht

¢
∂h

= c
¡
σ̂2t , ht

¢ ¡
σ̂2t − ht

¢
where c

¡
σ̂2t , ht

¢
=
¡
σ̂2t − ht

¢−1
∂L
¡
σ̂2t , ht

¢
/∂h, since σ̂2t 6= ht a.s. by assumption A2. Now decom-

pose c
¡
σ̂2t , ht

¢
into

c
¡
σ̂2t , ht

¢
= Et−1

£
c
¡
σ̂2t , ht

¢¤
+ εt

where Et−1 [εt] = 0. Thus

Et−1

"
∂L
¡
σ̂2t , h

∗
t

¢
∂h

#
= Et−1

£
c
¡
σ̂2t , h

∗
t

¢ ¡
σ̂2t − h∗t

¢¤
= Et−1

£
c
¡
σ̂2t , ht

¢¤
Et−1

£
σ̂2t − h∗t

¤
+Et−1

£
εt
¡
σ̂2t − h∗t

¢¤
If Et−1

£
∂L
¡
σ̂2t , h

∗
t

¢
/∂h

¤
= 0 for h∗t = Et−1

£
σ̂2t
¤
, then it must be that Et−1

£
σ̂2t − h∗t

¤
= 0 ⇒

Et−1
£
εt
¡
σ̂2t − h∗t

¢¤
= 0 for all Ft ∈ F̃ . Employing a generalised Farkas lemma, see Lemma 8.1 of

Gourieroux and Monfort (1996), this implies that ∃ λ ∈ R such that λ
¡
σ̂2t − h∗t

¢
= εt

¡
σ̂2t − h∗t

¢
for

every Ft ∈ F̃ and for all t. Since σ̂2t − h∗t 6= 0 a.s. by assumption A2 this implies that εt = λ a.s.

for all t. Since Et−1 [εt] = 0 we then have λ = 0. Thus c
¡
σ̂2t , h

∗
t

¢
= Et−1

£
c
¡
σ̂2t , h

∗
t

¢¤
for all t, which

implies that c
¡
σ̂2t , h

∗
t

¢
= c (h∗t ), and thus that ∂L

¡
σ̂2t , ht

¢
/∂h = c (ht)

¡
σ̂2t − ht

¢
.
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A necessary condition for h∗t to minimise Et−1
£
L
¡
σ̂2t , h

¢¤
is that Et−1

£
∂2L

¡
σ̂2t , h

∗
t

¢
/∂h2

¤
≥ 0,

using A5 to interchange expectation and differentiation. Using the previous result we have:

Et−1

"
∂2L

¡
σ̂2t , h

∗
t

¢
∂h2

#
= Et−1

£
c0 (h∗t )

¡
σ̂2t − h∗t

¢
− c (h∗t )

¤
= −c (h∗t )

which is non-negative iff c (h∗t ) is non-positive. From assumption A4 we know that the optimum is

in the interior of H and so we know that c 6= 0, and thus c (h) < 0 ∀ h ∈ H. To obtain the loss
function corresponding to the given first derivative we simply integrate up:

L
¡
σ̂2, h

¢
= σ̂2

Z
c (h) dh−

Z
c (h)hdh

= B
¡
σ̂2
¢
+ σ̂2C (h)−C (h)h+

Z
C (h) dh

= C̃ (h) +B
¡
σ̂2
¢
+ C (h)

¡
σ̂2 − h

¢
where C is a strictly decreasing function (i.e. C 0 ≡ c is negative) and C̃ is the anti-derivative of C.

By assumption A3 both B and C are twice continuously differentiable. Thus S3⇒ S1.
Finally, we show that S2⇒ S3: by the definition of h∗t we have

Et−1
£
L
¡
σ̂2t , h

∗
t

¢¤
≤ Et−1

h
L
³
σ̂2t , h̃t

´i
for any other h̃t ∈ Ft−1

so E
£
L
¡
σ̂2t , h

∗
t

¢¤
≤ E

h
L
³
σ̂2t , h̃t

´i
by the LIE

and E
£
L
¡
σ2t , h

∗
t

¢¤
≤ E

h
L
³
σ2t , h̃t

´i
since L is robust under S2

But L
¡
σ̂2, h

¢
has a unique minimum at σ̂2 = h, and if we set h̃t = σ2t ∈ Ft−1 then it must be the

case that h∗t = σ2t . This completes the proof.

Proof of Proposition 3. Without loss of generality, we work below with loss functions

that have been normalised to imply zero loss when the forecast error is zero: L
¡
σ̂2, h

¢
= C̃ (h) −

C̃
¡
σ̂2
¢
+C (h)

¡
σ̂2 − h

¢
.

(i) We want to find the general sub-set of loss functions that satisfy L
¡
σ̂2, h

¢
= L̃

¡
σ̂2 − h

¢
∀
¡
σ̂2, h

¢
for some function L̃. This condition implies

∂L
¡
σ̂2, h

¢
∂σ̂2

= −
∂L
¡
σ̂2, h

¢
∂h

∀
¡
σ̂2, h

¢
−C

¡
σ̂2
¢
+ C (h) +C 0 (h)

¡
σ̂2 − h

¢
= 0 ∀

¡
σ̂2, h

¢
Taking the derivative of both sides w.r.t. σ̂2 we obtain:

−C 0
¡
σ̂2
¢
+ C 0 (h) = 0 ∀

¡
σ̂2, h

¢
which implies C 0 (h) = κ1 ∀ h
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and since we know C is strictly decreasing, we also have κ1 < 0.

so C (h) = κ1h+ κ2
¡
σ̂2
¢

C̃ (h) =
1

2
κ1h

2 + κ2
¡
σ̂2
¢
h+ κ3

¡
σ̂2
¢

where κ2, κ3 are constants of integration, and may be functions of σ̂2. Thus the loss function

becomes

L
¡
σ̂2, h

¢
=

1

2
κ1h

2 + κ2
¡
σ̂2
¢
h+ κ3

¡
σ̂2
¢

−1
2
κ1σ̂

4 − κ2
¡
σ̂2
¢
σ̂2 − κ3

¡
σ̂2
¢

+
¡
κ1h+ κ2

¡
σ̂2
¢¢ ¡

σ̂2 − h
¢

= −1
2
κ1
¡
σ̂2 − h

¢2
Since proportionality constants do not affect the loss function, we find that the only loss function

that depends on
¡
σ̂2, h

¢
only through the forecast error, σ̂2 − h, is the MSE loss function.

(ii) We next want to find the general sub-set of loss functions that satisfy L
¡
σ̂2, h

¢
= L̃

¡
σ̂2/h

¢
∀
¡
σ̂2, h

¢
for some function L̃. Note that this condition implies that L is homogeneous of degree zero. Using

Proposition 4 below, this implies that the loss function must be of the form:

L
¡
σ̂2, h

¢
=

σ̂2

h
− log σ̂

2

h
− 1

which is the QLIKE loss function up to additive and multiplicative constants.

Proof of Proposition 4. (i) It is obvious L (h, h; b) = 0 ∀ h ∈ H. We now show that all
three of these loss functions are of the form in Proposition 2.

b /∈ {−1,−2}: C (h) = − (b+ 1)−1 hb+1, C̃ (h) = − (b+ 1)−1 (b+ 2)−1 hb+2, B
¡
σ̂2
¢
=

(b+ 1)−1 (b+ 2)−1 σ̂2b+4.

b = −1: C (h) = − log h, C̃ (h) = h− h logh, B
¡
σ̂2
¢
= σ̂2 log σ̂2 − σ̂2.

b = −2: C (h) = h−1, C̃ (h) = log h, B
¡
σ̂2
¢
= − log σ̂2.

(ii) We seek the subset of robust loss functions that are homogeneous of order k : L
¡
aσ̂2, ah

¢
=

akL
¡
σ̂2, h

¢
∀ a > 0. Let

λ
¡
σ̂2, h

¢
≡ ∂L

¡
σ̂2, h

¢
/∂h

= C 0 (h)
¡
σ̂2 − h

¢
for robust loss functions.

Since L is homogeneous of order k, λ is homogeneous of order (k − 1) . This implies λ
¡
aσ̂2, ah

¢
=

ak−1λ
¡
σ̂2, h

¢
= ak−1C 0 (h)

¡
σ̂2 − h

¢
, while direct substitution yields λ

¡
aσ̂2, ah

¢
= aC 0 (ah)

¡
σ̂2 − h

¢
.

Thus C 0 (ah) = ak−2C 0 (h) ∀ a > 0, that is, C 0 is homogeneous of order (k − 2) .
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Next we apply Euler’s theorem to C 0: C 00 (h)h = (k − 2)C 0 (h) ∀h > 0 , and so

(2− k)C 0 (h) + C 00 (h)h = 0

We can solve this first-order differential equation to find:

C 0 (h) = γhk−2

where γ is an unknown scalar. Since C 0 < 0 we know that γ < 0, and as this is just a scaling

parameter we set it to −1 without loss of generality.

C 0 (h) = −hk−2

C (h) =

⎧⎨⎩ 1
1−kh

k−1 + z1 k 6= 1
− log h+ z1 k = 1

C̃ (h) =

⎧⎪⎪⎨⎪⎪⎩
z1h+

1
k(1−k)h

k + z2 k /∈ {0, 1}
z1h+ h− h logh+ z2 k = 1

z1h+ logh+ z2 k = 0

where z1 and z2 are constants of integration. Finally, we substitute the expressions for C and C̃

into equation (25) and simplify to obtain the loss functions in equation (27) with k = b+ 2.

Proof of Proposition 5. (i) If L is homogeneous then L
¡
aσ̂2, ah

¢
= akL

¡
σ̂2, h

¢
∀a > 0

for some k. Then E
£
L
¡
aσ̂2t , ah1t

¢¤
≥ E

£
L
¡
aσ̂2t , ah2t

¢¤
⇔ E

£
akL

¡
σ̂2t , h1t

¢¤
≥ E

£
akL

¡
σ̂2t , h2t

¢¤
⇔

E
£
L
¡
σ̂2t , h1t

¢¤
≥ E

£
L
¡
σ̂2t , h2t

¢¤
, for any a > 0.

(ii) Here we need only provide an example. Consider the following stylised case: σ2t = 1 ∀t,
(h1t, h2t) = (γ1, γ2) ∀t, and σ̂2t is such that Et−1

£
σ̂2t
¤
= 1 a.s. ∀t. As a robust but non-homogeneous

loss we will use the one generated by the following specification for C 0:

C 0 (h) = − log (1 + h)

so C (h) = h− (1 + h) log (1 + h)

and C̃ (h) =
1

4

h
h (3h+ 2)− 2 (1 + h)2 log (1 + h)

i
For small h this loss function resembles the the b = 1 loss function from Proposition 4 (up to

a scaling constant), but for medium to large h this loss function does not correspond to any in

Proposition 4.
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Given this set-up, we have

E
£
L
¡
aσ̂2t , ahit

¢¤
=

1

4

h
aγi (3aγi + 2)− 2 (1 + aγi)

2 log (1 + aγi)
i
−E

h
C̃
¡
aσ̂2t

¢i
+a [aγi − (1 + aγi) log (1 + aγi)] (1− γi)

Then define

dt (γ1, γ2, a) ≡ L
¡
aσ̂2t , aγ1

¢
− L

¡
aσ̂2t , aγ2

¢
E [dt (γ1, γ2, a)] =

a

4
(γ1 − γ2) (2− 4a− a (γ1 + γ2))

+
1

2

³
a2 (γ1 − 1)2 − (1 + a)2

´
log (1 + aγ1)

−1
2

³
a2 (γ2 − 1)2 − (1 + a)2

´
log (1 + aγ2)

Then note that E [dt (1/3, 3/2, 1)] = −0.0087, and so the first forecast has lower expected loss than
the second using the “original” scaling of the data. But E [dt (1/3, 3/2, 2)] = 0.0061, and so if all

variables are multiplied by 2 then the second forecast has lower expected loss than the first.

Proof of Proposition 6. (i) Follows directly from Exercise 5.21 of White (1999).

(ii) For b /∈ {−1,−2} we have:

dt (b) =
1

b+ 2

³
hb+21t − hb+22t

´
− 1

b+ 1
σ̂2t

³
hb+11t − hb+12t

´
so dt (b)

2 =
1

(b+ 2)2

³
h2b+41t + h2b+42t − 2hb+21t hb+22t

´
+

1

(b+ 1)2
σ̂4t

³
h2b+21t + h2b+22t − 2hb+11t hb+12t

´
− 2

(b+ 1) (b+ 2)
σ̂2t

³
h2b+31t + h2b+32t − hb+21t hb+12t − hb+11t hb+22t

´
The largest terms in this expression are: (a) h2b+4it , (b) σ̂4th

2b+2
it and (c) σ̂2th

2b+3
it for i = 1, 2 . The

expectation of first term is finite by assumption. (b) If b > −1, then by Hölder’s inequality:

E
h
σ̂4th

2b+2
it

i
≤ E

h¡
σ̂4t
¢b+2i1/(b+2)

E

∙³
h2b+2it

´(b+2)/(b+1)¸(b+1)/(b+2)
= E

h
σ̂4b+8t

i1/(b+2)
E
h
h2b+4it

i(b+1)/(b+2)
< ∞ by assumption.

If b < −1, then we will make use of the assumption that inft hit ≡ ci > 0 for i = 1, 2. This

assumption implies that h−1it is bounded below by zero and above by c−1i , and thus all moments of
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h−1it exist.

E
h
σ̂4th

2b+2
it

i
≤ E

h¡
σ̂4t
¢(4+δ)/4i4/(4+δ)

E

∙³
h2b+2it

´(4+δ)/δ¸δ/(4+δ)
, for δ > 0

= E
h
σ̂4+δt

i4/(4+δ)
E
h
h
2(b+1)(4+δ)/δ
it

iδ/(4+δ)
which is finite as E

h
σ̂4+δt

i
< ∞ by assumption, and E

h
h−Mit

i
< ∞ for all 0 ≤ M < ∞ since h−1it

is a bounded random variable. (c) If b > −1.5, then

E
h
σ̂2th

2b+3
it

i
≤ E

h
σ̂4b+8t

i1/(2b+4)
E

∙³
h2b+3it

´(2b+4)/(2b+3)¸(2b+3)/(2b+4)
= E

h
σ̂4b+8t

i1/(2b+4)
E
h
h2b+4it

i(2b+3)/(2b+4)
< ∞ by assumption.

If b < −1.5,

E
h
σ̂2th

2b+3
it

i
≤ E

h¡
σ̂2t
¢(4+δ)/2i2/(4+δ)

E

∙³
h2b+3it

´(4+δ)/(2+δ)¸(2+δ)/(4+δ)
= E

h
σ̂4+δt

i2/(4+δ)
E
h
h
(2b+3)(4+δ)/(2+δ)
it

i(2+δ)/(4+δ)
which is finite as E

h
σ̂4+δt

i
< ∞ by assumption, and E

h
h−Mit

i
< ∞ for all 0 ≤ M < ∞ since h−1it

is a bounded random variable.

Now consider b = −1. Here we have

dt = h1t − h2t − σ̂2t log
h1t
h2t

so d2t = (h1t − h2t)
2 + σ̂4t (log (h1t)− log (h2t))2

−2σ̂2t (log (h1t)− log (h2t)) (h1t − h2t)

The largest terms in this expression are: (a) h2it, (b) σ̂
4
t (log hit)

2 and (c) σ̂2thit log hit. The first

term is finite by assumption. For (b) we have

E
h
σ̂4t (log hit)

2
i
≤ E

h¡
σ̂4t
¢(e+1)/eie/(e+1)

E
h
(log hit)

2(e+1)
i1/(e+1)

= E
h
σ̂
4(e+1)/e
t

ie/(e+1)
E
h
(log hit)

2(e+1)
i1/(e+1)
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The first term on the right-hand side is finite by assumption. For the second term note:

(log h)k ≤ hk/e ∀ h ≥ 1 for k > 0

And E
h
(log hit)

k
i
≡

Z ∞

ci

(log hit)
k fit (hit) dhit

=

Z 1

ci

(log hit)
k fit (hit) dhit +

Z ∞

1
(loghit)

k fit (hit) dhit¯̄̄̄Z 1

ci

(log hit)
k fit (hit) dhit

¯̄̄̄
< ∞ for k > 0 since ci > 0

Z ∞

1
(loghit)

k fit (hit) dhit ≤
Z ∞

1
h
k/e
it fit (hit) dhit

≤
Z ∞

ci

h
k/e
it fit (hit) dhit

≡ E
h
h
k/e
it

i
So E

h
(log hit)

2(e+1)
i
<∞ if E

h
h
2(e+1)/e
it

i
<∞, which holds by assumption. For (c) we have

E
£
σ̂2thit loghit

¤
≤ E

h¡
σ̂2t
¢(2e+1)/eie/(2e+1)

E
h
h
(2e+1)/e
it

ie/(2e+1)
E
h
(log hit)

2e+1
i1/(2e+1)

< ∞

As the first two terms on the right-hand side are finite by assumption, and the final term is finite

given that the second term is finite and ci > 0.

Finally consider b = −2. We have

dt = σ̂2t

µ
1

h1t
− 1

h2t

¶
+ log

h1t
h2t

so d2t = σ̂4t

µ
1

h1t
− 1

h2t

¶2
+ 2 (logh1t − logh2t)2

+2σ̂2t

µ
1

h1t
− 1

h2t

¶
log h1t − 2σ̂2t

µ
1

h1t
− 1

h2t

¶
log h2t

with largest terms: (a) σ̂4th
−2
it , (b) (log hit)

2, (c) σ̂2th
−1
it log hit, and (d) σ̂

2
th
−1
jt log hit for i = 1, 2 and

j 6= i. For term (a) we have

E

∙
σ̂4t
1

h2it

¸
≤ E

h¡
σ̂4t
¢(4+δ)/4i4/(4+δ)

E

"µ
1

h2it

¶(4+δ)/δ#δ/(4+δ)
, for δ > 0

= E
h
σ̂4+δt

i4/(4+δ)
E
h
h
−2(4+δ)/δ
it

iδ/(4+δ)
The first term on the right-hand side is finite by assumption and the second term is finite since

ci > 0. For term (b) recall from above that if ci > 0 then E
h
(log hit)

k
i
< ∞ if E

h
h
k/e
it

i
< ∞ for
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k > 0. So E
h
(log hit)

2
i
< ∞ is finite if E

h
h
2/e
it

i
< ∞, which holds by assumption. For term (c)

we use

E
£
σ̂2th

−1
it log hit

¤
≤ E

h¡
σ̂2t
¢(4+δ)/2i2/(4+δ)

E
h¡
h−1it log hit

¢(4+δ)/(2+δ)i(2+δ)/(4+δ)
for δ > 0

= E
h
σ̂4+δt

i2/(4+δ)
E
h¡
h−1it log hit

¢(4+δ)/(2+δ)i(2+δ)/(4+δ)
which is finite as the first term is finite by assumption and the second term is finite since h−1it log hit

is a bounded random variable if ci > 0. For the term in (d) we have

E
h
σ̂2th

−1
jt log hit

i
≤ E

h¡
σ̂2t loghit

¢(1+δ/4)i1/(1+δ/4)
E
h
h
−(4+δ)/δ
jt

iδ/(4+δ)
, for δ > 0

≤
Ã
E

∙³
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2(1+δ/4)
t

´2¸1/2
E

∙³
(log hit)

(1+δ/4)
´2¸1/2!1/(1+δ/4)

E
h
h
−(4+δ)/δ
jt

iδ/(4+δ)
=

µ
E
h
σ̂4+δt

i1/2
E
h
(log hit)

2+δ/2
i1/2¶1/(1+δ/4)

E
h
h
−(4+δ)/δ
jt

iδ/(4+δ)
The first term is finite by assumption, and the third term is finite as ci > 0. The second term

is finite if E
h
h
(2+δ/2)/e
it

i
is finite, and E

h
h
(2+δ/2)/e
it

i
< E

h
h
2/e+δ
it

i
, which is finite by assumption.

This completes the proof.
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8 Tables and Figures

Table 1: Optimal forecasts under various loss functions

Optimal forecast, h∗t

Loss function rt|Ft−1 ∼ Student0s t
¡
0, σ2t , ν

¢
rt|Ft−1 ∼ Ft

¡
0, σ2t

¢
ν ν = 6 ν = 10 ν →∞

MSE σ2t σ2t σ2t σ2t σ2t

QLIKE σ2t σ2t σ2t σ2t σ2t

MSE-LOG exp
©
Et−1

£
log ε2t

¤ª
σ2t exp

©
Ψ
¡
1
2

¢
−Ψ

¡
ν
2

¢ª
(ν − 2)σ2t 0.22σ2t 0.25σ2t 0.28σ2t

MSE-SD (Et−1 [|εt|])2 σ2t ν−2
π

¡
Γ
¡
ν−1
2

¢
/Γ
¡
ν
2

¢¢2
σ2t 0.56σ2t 0.60σ2t 0.64σ2t

MSE-prop Kurtosist−1 [rt]σ2t 3ν−2ν−4σ
2
t 6.00σ2t 4.00σ2t 3.00σ2t

MAE Mediant−1
£
r2t
¤

ν−2
ν Median [F1,ν ]σ

2
t 0.34σ2t 0.39σ2t 0.45σ2t

MAE-LOG Mediant−1
£
r2t
¤

ν−2
ν Median [F1,ν ]σ

2
t 0.34σ2t 0.39σ2t 0.45σ2t

MAE-SD Mediant−1
£
r2t
¤

ν−2
ν Median [F1,ν ]σ

2
t 0.34σ2t 0.39σ2t 0.45σ2t

MAE-prop† n/a
¡
2.36 + 1.00

ν + 7.78
ν2

¢
σ2t 2.73σ2t 2.55σ2t 2.36σ2t

Notes: This table presents the forecast that minimises the conditional expected loss when the squared

return is used as a volatility proxy. That is, h∗t minimises Et−1
£
L
¡
r2t , h

¢¤
, for various loss functions L.

The first column presents the solutions when returns have an arbitrary conditional distribution Ft with

mean zero and conditional variance σ2t , the second, third, and fourth columns present results with returns

have the standardised Student’s t distribution, and the final column presents the solutions when returns

are conditionally normally distributed. Γ is the gamma function and Ψ is the digamma function. †The

expressions given for MAE-prop are based on a numerical approximation, see Appendix 1 for details.
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Table 2: Optimal forecasts under various loss functions, using realised volatility and range

Volatility proxy

Loss function Realised volatility

Range Arbitrary m m = 1 m = 13 m = 78 m→∞
MSE σ2t σ2t σ2t σ2t σ2t σ2t

QLIKE σ2t σ2t σ2t σ2t σ2t σ2t

MSE-LOG† 0.85σ2t e−1.2741/mσ2t 0.28σ2t 0.91σ2t 0.98σ2t σ2t

MSE-SD 0.92σ2t
1
m

³
E
hp

χ2m

i´2
σ2t 0.56σ2t 0.96σ2t 0.99σ2t σ2t

MSE-prop 1.41σ2t
¡
1 + 2

m

¢
σ2t 3.00σ2t 1.15σ2t 1.03σ2t σ2t

MAE 0.83σ2t
1
mMedian

£
χ2m
¤
σ2t 0.45σ2t 0.95σ2t 0.99σ2t σ2t

MAE-LOG 0.83σ2t
1
mMedian

£
χ2m
¤
σ2t 0.45σ2t 0.95σ2t 0.99σ2t σ2t

MAE-SD 0.83σ2t
1
mMedian

£
χ2m
¤
σ2t 0.45σ2t 0.95σ2t 0.99σ2t σ2t

MAE-prop† 1.19σ2t
¡
1 + 1.3624

m

¢
σ2t 2.36σ2t 1.10σ2t 1.02σ2t σ2t

Notes: This table presents the forecast that minimises the conditional expected loss when the range or

realised volatility is used as a volatility proxy. That is, h∗t minimises Et−1
£
L
¡
σ̂2t , h

¢¤
, for σ̂2t = RG∗2t or

σ̂2t = RVt, for various loss functions L. In all cases returns are assumed to be generated as a zero mean

Brownian motion with constant volatility within each trade day and no jumps. The cases ofm = 1, 13, 78

correspond to the use of daily squared returns, realised variance with 30-minute returns and realised variance

with 5-minute returns respectively. The case that m → ∞ corresponds to the case where the conditional

variance is observable ex-post without error. †For the MSE-LOG and MAE-prop loss functions we used

simulations, numerical integration and numerical optimisation to obtain the expressions given. Details on

the computation of the figures in this table are given in Appendix 1.
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Table 3: Mincer-Zarnowitz tests of the volatility forecasts

Volatility proxy
Volatility Daily 65-min 15-min 5-min
Model squared return realised vol realised vol realised vol
Rolling β̂0

(s.e.)

2.13∗
(0.48)

1.82∗
(0.36)

2.17∗
(0.40)

2.33∗
(0.40)

window β̂1
(s.e.)

0.55∗
(0.09)

0.55∗
(0.07)

0.50∗
(0.07)

0.53∗
(0.07)

χ22-stat
pval

25.63∗
0.00

44.32∗
0.00

53.78∗
0.00

43.86∗
0.00

β̂0
(s.e.)

2.39∗
(0.46)

2.15∗
(0.40)

2.20∗
(0.44)

2.43∗
(0.42)

RiskMetrics β̂1
(s.e.)

0.50∗
(0.09)

0.48∗
(0.08)

0.50∗
(0.09)

0.51∗
(0.09)

χ22-stat
pval

32.99∗
0.00

38.51∗
0.00

30.24∗
0.00

35.93∗
0.00

Notes: This table presents the results of Mincer-Zarnowitz (MZ) tests of two IBM equity volatility
forecasts: a 60-day rolling window forecast, and a RiskMetrics forecast. The sample period is January 1994
to December 2003. The null hypothesis in the MZ test is that β0 = 0 and β1 = 1. We present the parameter
estimates and Newey-West standard errors, and mark any parameter estimates that are significantly different
from their hypothesised values at the 0.05 level with an asterisk. We also present the results of a χ22 test
of the joint parameter restriction and the p-value associated with the joint test statistic. A p-value of less
than 0.05 indicates a rejection of the null, and thus evidence against the optimality of the volatility forecast.
These statistics are marked with an asterisk.

Table 4: Comparison of rolling window and RiskMetrics forecasts

Volatility proxy
Daily 65-min 15-min 5-min

Loss function squared return realised vol realised vol realised vol
b = 1 -1.58 -1.66 -1.30 -1.35
b = 0 (MSE) -0.59 -0.80 -0.03 -0.13
b = -1 1.30 1.04 1.65 -1.55
b = -2 (QLIKE) 1.94 2.21∗ 2.73∗ 2.41∗

b = -5 -0.17 0.25 1.63 0.65

Notes: This table presents the t-statistics from Diebold-Mariano-West tests of equal predictive accuracy
for a 60-day rolling window forecast and a RiskMetrics forecast, for IBM over the period January 1994
to December 2003. A t-statistic greater than 1.96 in absolute value indicates a rejection of the null of
equal predictive accuracy at the 0.05 level. These statistics are marked with an asterisk. The sign of the
t-statistics indicates which forecast performed better for each loss function: a positive t-statistic indicates
that the rolling window forecast produced larger average loss than the RiskMetrics forecast, while a negative
sign indicates the opposite.
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Figure 1: Optimal forecasts under MAE loss when true variance is 1, for various levels of kurtosis,
using the standardised Student’s t distribution. The dashed line represents the optimal forecast as
ν → 4.
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Figure 2: Optimal forecasts under MSE-SD loss when true variance is 1, for various levels of
kurtosis, using the standardised Student’s t distribution. The dashed line represents the optimal
forecast as ν → 4.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

hhat (r2=2)

lo
ss

Various robust loss functions

 

 
b=1
b=0.5
b=0 (MSE)
b=-0.5
b=-1
b=-2 (QLIKE)
b=-5

Figure 3: Loss functions for various choices of b. True σ̂2=2 in this example, with the volatility
forecast ranging between 0 and 4. b=0 and b=-2 correspond to the MSE and QLIKE loss functions
respectively.

39



0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

forecast error (r2=2)

lo
ss

Ratio of loss from negative forecast errors to positive forecast errors

b=1
b=0.5
b=0 (MSE)
b=-0.5
b=-1
b=-2 (QLIKE)
b=-5

Figure 4: Ratio of losses from negative forecast errors to positive forecast errors, for various choices
of b. True σ̂2=2 in this example, with the volatility forecast ranging between 0 and 4. b=0 and
b=-2 correspond to the MSE and QLIKE loss functions respectively.
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Figure 5: Conditional variance forecasts for IBM returns from 60-day rolling window and RiskMet-
rics models, January 1994 to December 2003.
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